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Abstract—When merging data from various sources, it is often depending on whether opening blurbs or closing credits are
the case that small variations in data format and interpretdion  included, and so on. For example, we have differing values
cause traditional functional dependencies (FDs) to be viated, (110 and 112) in the DRATION field for the first two entries.
without there being an intrinsic violation of semantics. Examples ! . .
include differing address formats, or different reported lati- In suqh a setting, where thgre can be natural dlffe_re.n_cetsmn h
tude/longitudes for a given address. In this paper, we definmet- data is recorded, a traditional dependency definition seems
ric functional dependencies, which strictly generalize taditional — overly restrictive.

FDs by allowing small differences (controlled by a metric) n As another example, consider Table Il, which depicts an
values of the consequent attribute of an FD. We present effient example of violation of traditional FDs for strings. Whethe

algorithms for the verification problem: determining whether a “ w - “ "
given metric FD holds for a given relation. We experimentaly or not the word "Avenue” is abbreviated to *Ave.”, whether

demonstrate the validity and efficiency of our approach on “Street” is written out in full or as “St”, and so on, might
various data sets that lie in multidimensional spaces. change the representation of an address to the point where

a natural dependency of the form SSN ADDRESS may

no longer hold on a merged table, even though the different
Functional dependencies (FDs) are fundamental consraisdurces are clearly referring to the same address.

that define the relation between attributes in a databasge. Ke

|. INTRODUCTION

relationships are special kinds of functional dependexncig SOURCE SSN ADDRESS
. . j data. com 124-14-5903 1403 3rd Avenue, Cleveland OH
and FDs provide a mechanism for database normalizatiomta. com 563-82-5145 | 1701 New York Av., Washington, D.C.
i i i i i snoop. com 563-82-5145 1701 New York Ave., Washington, D.C.
during the design process. In.|ts most basic for_m, a funatio Snoon. com Soa1a0008 | 1403 Trnd Ave.. Olovelnd oo}
dependency over a relation instanceof a relation schema ABLE N

R is an expressiolX — Y, whereX,Y C R. R is said to
satisfy the dependencX — Y if all tuples with any fixed
value of the attribute(’ share a single value of the attributes
Y. This captures the idea that the valuesrirdependon the  An example of violation of traditional dependencies due to
values inX. variations that form a natural part of the data is depicted in
However, this formulation of a dependency is not robugtable IIl. The data is organized according to address arid the
enough to capture functional relationships on data obthingtitude/longitude values returned from multiple geo-iogd
from merging heterogeneous sources, each having possigbbsites [1]. In this scenario one might expect a functicieal
different representation conventions for the attribdte<Con- pendency of the form ADRESS— (LATITUDE, LONGITUDE)
sider Table I, an example of a table of movie titles and rugnino hold, but small errors in precision (insignificant in geaip
times obtained from crawling various web sources. might causes discrepancies that violate this dependerutg. N
that in this setting, the variations are a natural part ofdh&,

EXAMPLE OF ADDRESS DISCREPANCIES

SOURCE TiTLE DURATION and cannot be eliminated by format standardization.

novi es. aol . com Aliens 110

finnguide.fi Aliens 112

amazon. com Clockwork Orange 137 SOURCE ADDRESS LATITUDE LONGITUDE

movi e-vaul t. com | A Beautiful Mind 144 googl e 65 N St Apt#C6, SLC | 40.770896 -111.864066

wal mart. com A Beautiful Mind 145 geocoder | 65 N St Apt#C6, SLC | 40.770767 -111.863768

t esco. com Clockwork Orange 131 googl e 50 Cen Camp Dr, SLC | 40.758951  -111.845244

geocoder | 50 Cen Camp Dr, SLC | 40.767599  -111.843995
TABLE | googl e 35 S 700 E Apt#3, SLC| 40.76837 -111.87064
DISCREPANCIES IN MOVIE DURATIONS geocoder | 35S 700 E Apt#3, SLC| 40.76833 -111.870869
TABLE Il

. DISCREPANCIES IN LATITUDHLONGITUDE FOR IDENTICAL ADDRESSES
In a table such as this, we would expect the FDILE

— DURATION to hold. However, it is likely that different
sources have different methods for measuring movie dursitio There has been extensive research on the problem of ver-



ifying and enforcing integrity constraints in heterogemgo X — Y, where X, Y C R. A functional dependency is said
databases [2] integrated from multiple sources. Many wiffe to hold over a relation instance if for all pairs of tuples
measures characterizirgpproximatefunctional dependenciest,t’ € r, t[X| = ¢/[X] impliest[Y] = '[Y]. For a tuplet and
have been proposed. These include measures based ongleletimibutesX, let the equivalence class afdenoted byit] x (),

as few tuples as possible so that a given FD holds [3], abé the set of all tuples im that agree withk on X. In what
measures based on computing tenditional entropy The follows, we will drop references te, and unless otherwise
paper by Gianella [4] surveys the various measures and9laspecified,t] x will always be computed over all of. In other
them within an axiomatic framework. Recently, Bohannowords, [t]x = {u € r|u[X] = t[X]}. We denote the partition
et al. [5] introduced the notion of aonditional functional of » with respect taX as the collection of equivalence classes
dependencyThis is a dependency that applies only to tuplesx (r) = {[t]x }. The expression Pdrt) denotes the space of
that satisfy a certain condition, and is motivated by ing¢ign all partitions of the tuples im. In particular,rx (r) € Par{r).
scenarios where different tables, with possibly differing For a set of tuple§” C r, let T[Y] = {t[Y]|t € T'} denote
tegrity constraints, might be integrated. This work wagHer the projection ofl" onto the attribute sét”. We can now write
developed by Conget al. [6], who studied the problem of the condition forX — Y to be a functional dependency as:
determining a minimalepair of an inconsistent database sanaxre,, (- |T[Y]] < 1.

as to satisfy a given set of conditional FDs. Most recently,

Fan [7] introduced the notion ahatching dependenciess A. Rationale

a way of enforcing object identification constraints across A traditional FD X — Y says that for any two tuples
tables. These dependencies use the idea of similarity me=asy ¢/ ¢[X] = ¢[X] = ¢[Y] = ¢[Y]. In the aforementioned
to generalize the equality relation. Another perspective @xamples, this notion breaks down because we have a situatio
dependencies and data cleaning was provided by AreRg@seret|y] and#[Y], while close in a metric sense, are not
et al. [8]: in their framework, rather than removing tuplesqual. Thus, in order to formulate a more robust definition of
that cause inconsistencies with respect to dependenbieg, ty functional dependency, we have to incorporate this natfon
examine queries to the database, and return an answer tigfseness” into the definition. More formally, we can explo
would be consistent across atinimal repairsto the database. gny availablemetric structuredefined on the attribut® and
Research on computing sudonsistent query answemas replace the condition[Y] = #'[Y] by the metric condition
developed further in [9], [10]. dﬁt[Y], t'[Y]) < 6, whered is a tolerance parameter.

Despite the enhanced definitions, it is to be noted that allconsider the movie database example from Table I. A
the above approaches are vulnerable to small discrepariggural metric on running times is the absolute difference
in data. Both approximate as well as conditional functiong{; +) = |t ueamon — t! urarion |- 1f We fix & = 6, then we
dependencies might give poor results due to this inherefie that for each of the distinct values of the attributeL &,
lack of robustness in their defintions. We intend to overcomge set of values of DRATION lie within an interval of length
these limitations and propose a new notion of functiongl_ ¢, and so a “metric” functional dependency holds. For the
dependencies that capture these small variations in detlaisl example involving latitude/longitude, an appropriatetatise
paper we initiate a study of metric functional dependenciggetric in a plane is the two-dimensional Euclidean metrar. F
We define the notion of a metric functional dependency (MFe example involving addresses, the natural metric might b
and perform a study of the complexity of verifying whetheghe gistance induced by cosine similarity on strings. Inegeh
a metric functional dependency holds between two attnb% can say that the MFIX N Y, with metricd : dom(Y)

sets. We give exact algorithms for verifying metric FDs5< dom() — R holds if for eachs € dom the set of
Specifically, we show how to verify MFDs efficiently for ) v X)),

. i ) uplest with ¢[X] = «, when projected td”, lie within a ball
general metrics as well as Euclidean distance spaces. gﬁdiametem
present an |mplementa}tlon of schemes for vgnfymg MFDs, Notice that this definition strictly generalizes the traatil
and accompany this with an experimental suite that demaq

- dEfinition of a functional dependency. We can defineekact
strates the ability of MFDs to extract useful structure fror]:hetriC dp(y,y) aslif y £y, and0 if y — y'. It can easily

data in an eff|C|er.1t_manner.. , , , be verified that this satisfies the properties of a metric. Now

We start by defining metric FDs in Section Il. In Section Il _, . . 5 . .
we study the complexity of verifying MFDs, and give exSettingd = 0, we can see that iK' —= 3" with the metric
act algorithms. Section IV presents a detailed experinheniiag’ then the standard FOX — 3" holds.
evaluation of our approach; this is followed by discussion iB. Definitions

Section V.
Let d : dom() x dom() — R be a metric defined on

Il. METRIC FUNCTIONAL DEPENDENCIES the domain ofY". Specifically,d is symmetric, and satisfies
We denote the domain of an attribute by dom(x). If X the triangle inequality as well as identity of indiscerrezbl

consists of a sequence of attributds= A; A, ... Ay, then (d(z,y) = 0 < = = y). The diameter A4(S) of a set of
dom(X) = dom(4;) x dom(s) x ... x dom(4,). A func- POINtsS in a metric space is the maximum distance between

tional dependencyver a relation schemz is an expression any pair of pointsAq(S) = max; ges d(p, ).



Definition 2.1 (Metric Functional Dependency (MFD)): time [12] using the rotating calipers method. We refer ta thi
Given a relation defined over a relation schenty attribute algorithm as @GLIPERS.
setsX,Y C R, a metricd overY, and a parametef > 0, It is possible to compute the diameter @(n logn) time
the metric functional dependency %, vis said to hold if for points in three dimensions [13]; however, this algaritis
highly impractical. Ford > 4, there can be2(n?) diameter
Tné?é Aa(T[Y]) <9 pairs, and so obtaining better exact solutions is difficult,
e?lthough there are some approaches. A more useful direction
is to allow the algorithm to return aapproximate diameter
which might be within a factor ofl + « of the correct
answer. This will immediately yield an approximate verifier

) ) .
{144,145}, which under the Euclidean metric has diametdP” the MFD X — .Y’ as we saw n the case of gener.al
A4(T[Y]) = 1. Similar computations for the other elementdnetric spaces, we will be aE)!e to verify whether there exists
of 7 yield the value€ and6 for the corresponding diameters@ ¢’ < (1 4+ «)d such thatX — Y.

Example 2.1:Consider again the example in Table I. L
X = TITLE, andY be DURATION. One sefl’ € 7x is the pair
of tuples {(nmovi e-vaul t. com A Beautiful Mind, 144),
(wal mart . com A Beautiful Mind, 145}. T'[Y] is the set

Thus, the MFDX -2 Y holds over this relation. The best known approach (in terms of dependence.)on
for computing the approximate diameter of a detof n
I1l. VERIFYING METRIC EDs points in R? is the core-setbased approach of Agarwal
al. [14]. Their algorithm yields the desired approximation

3(d—1)

It is straightforward to verify whether the FOd — Y ex- in time O(n + 1/a°“™). A variant of this algorithm was

Ists. For gach clas & rx, we merely check thdﬂj[y” =1L implemented by Yuet al. [15] and was demonstrated to
For metric FDs, we need more complex algorithms. In thEe quite effective in low dimensiond < 8. We use this

section, we study the verification problem for MFDs. Spec'algorithm for approximate diameter calculation and regeit t

ically, in this section we study the complexity of verifying, "5, c s v For details of the algorithm, we refer the reader
whether the MFDX — Y holds for a given relation. [15]. '

Note that the more general problem, of findisgmechoice String Metrics: For string data, an appropriate metric
of paramgtgrs _forwh|ch the ‘?'ep‘?”dency holds, can be redu?gqhe distance derived from the cosine similarity of high-
to the verification problem via binary search. - dimensional g-gram vectors, obtained from the g-gram fre-

The choice of metric directly impacts the inherent conyyency counts of strings. The normalized g-gram vectors can
plexity as well as efficiency of the verification procedur@s, p. onsidered as points lying on a high-dimensional unit
shown below: _ ) sphere. The cosine similarity between any two such points

~General Metric Spacest follows directly from the .4, pe evaluated as the dot product of the normalized vectors
definition of an MFD (Def|n|t|0n52.1) that the key subroutmerhus, computing the cosine dis-similarity of g-gram vestisr
needed to verify the MFDX — Y is a procedure that equivalent to computing the Euclidean distance betweereeor
computes the diameter of a set of points in a metric spaggonding high-dimensional (normalized) vectors, and thas
Letn = [r| be the size of the relation. algorithm QRESETfrom above can be used.

Observation 3.1:In O(n?) time we can verify whether the  However, this algorithm does not scale well with dimension,
MFD X - YV holds. Further, inO(n) time we can verify and thus it is more effective to use the algorithmruBEe
whether there exists’ < 25 such thatX - Y holds. and 2-ApPROX by treating the high dimensional vectors as

Proof: The first statement follows trivially from a simplePCINts in & general metric space. In Section IV, we present
brute force procedure. The second statement follows frdfPerimental results for this approach. _
the following algorithm: Pick any point and find its furthest ~ The Verification Algorithm:Algorithm 1 summarizes the
neighbour. It is well known [11] that this distance is aPverall verification procedure. The procedure DIANM«)
least half the optimal diameter; doubling it gives the degir invokes the appropriate algorithm from above, returning a

approximation. m nhumberr within a(1+c) factor of the diameter aP. If o = 0,
We refer to the brute force approach ag®BE and the the exact diameter is returned. The algorithm makes a linear
linear time 2-approximation as 2#RROX number of calls to DIAMP, &), one for eachl” € wx (r).

Euclidean Metrics: If we have no further information
about the metric, then 2-#pRoXis the best known approach.
In practice however, natural metrics on attributes will @av Experiments were performed on a 2.7 GHz dual-core
more structure. For example, theuRATION field from Ta- Pentium PC with 2 GB of RAM. The performance results
ble I induces the Euclidean distandéa,b) = |apurarion — Presented are based on real time as reported by thetUnme
bouration |- FOr this metric, diameter computation is trivial.command. Each experiment was repeated 10 times and the
compute the maximum and minimum values and take theiverage time was reported. All algorithms were implemented
difference. For points in the plane, diameter computatiam cin C++. We used three data sources for our experiments.
be performed inO(nlogn) time by computing the convex Table IV displays a summary of data characteristics as well
hull of the points and walking along the boundary in lineaas the metrics used and FDs tested.

IV. EXPERIMENTS



DATASET DIME- | #TUPLES AVG #CONSEQU SOURCE METRIC FD TESTED
NSION ENTS/ANTECEDENT
MOVIEDURATION 1 16688 33 Web Absolute Difference L1) | TITLE — DURATION
LATLONG 2 100000 100 Synthetic | Euclidean Distancel{z) | ADDRESS— (LATITUDE, LONGITUDE)
STRINGS 676 100006 200 DBGen Cosine Similarity SSN— NAME
TABLE IV

SUMMARY STATISTICS FOR OUR DATA SOURCES

Input: Relationr, attribute setsX,Y’, parametew, error
parametery > 0
Output: YES if X Y, else NO

1: for eachT € 7x (r) do
2. Letdp — DIAM (T[Y], )

(14a)s
—

3 if 07 > (14 «)d then
4: Return NO

5. end if

6. end for

7: Return YES

Algorithm 1. VERIFYMFD: Verifying X -2~ v

ity BRUTE. More importantly, the right Y-axis which presents
the % error in diameter calculation shows that the error in
diameter calculation is zero for most input sizes.

V. DISCUSSION

Classical dependency theory applies to traditional datedha
and much current work in this realm involves extending
notions of dependency to be more robust to data failure
and errors. In this paper, we have introduced the idea of
a metric functional dependency as a way of validating data
relationships robustly when dealing with heterogeneoua da
sources. Our results show that the notion is fundamentally

sound and realistic: dependency verification can be peddrm

on
We study experimental results of Algorithme®iFYMFD

for verifying MFDs.

One dimensionAs discussed in Section I, the diameter
of a set of points on the line can be computed trivially by
reporting the minimum and maximum along the axis. [2]

Two dimensions:We implement Algorithm @LIPERS 3]
using QHull [16] for convex hull construction and rotating
calipers [17] to compute diameter of the convex hull. Algo-
rithm CORESET is implemented using the method of [15], (41
with code provided by Hai Yu. Figure 1(a) compares the
performance and quality of the aforementioned approaches
with euclidean similarity metric. The left Y-axis of Fig-
ure 1(a), plotted in log-scale, compares the time complexit
of CALIPERS against ®RESET. For large number of inputs, [6]
CoRESET significantly outperforms @LIPERS. The right Y-
axis presents the % error in diameter calculation. As can be
seen, the error introduced due t@RESETIs around 10%- [7]
15% for large input sizes. (8]
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Fig. 1. Performance and quality comparison of: (aAlQPERS vs  [14]

CoRESETfor LATLONG (b) BRUTE vs 2-ApPROXfor STRINGS

large data sets, and for a diverse collection of possiate d

types.
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