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Abstract—When merging data from various sources, it is often
the case that small variations in data format and interpretation
cause traditional functional dependencies (FDs) to be violated,
without there being an intrinsic violation of semantics. Examples
include differing address formats, or different reported lati-
tude/longitudes for a given address. In this paper, we definemet-
ric functional dependencies, which strictly generalize traditional
FDs by allowing small differences (controlled by a metric) in
values of the consequent attribute of an FD. We present efficient
algorithms for the verification problem: determining whether a
given metric FD holds for a given relation. We experimentally
demonstrate the validity and efficiency of our approach on
various data sets that lie in multidimensional spaces.

I. I NTRODUCTION

Functional dependencies (FDs) are fundamental constraints
that define the relation between attributes in a database. Key
relationships are special kinds of functional dependencies,
and FDs provide a mechanism for database normalization
during the design process. In its most basic form, a functional
dependency over a relation instancer of a relation schema
R is an expressionX → Y , whereX, Y ⊆ R. R is said to
satisfy the dependencyX → Y if all tuples with any fixed
value of the attributesX share a single value of the attributes
Y . This captures the idea that the values inY dependon the
values inX .

However, this formulation of a dependency is not robust
enough to capture functional relationships on data obtained
from merging heterogeneous sources, each having possibly
different representation conventions for the attributesY . Con-
sider Table I, an example of a table of movie titles and running
times obtained from crawling various web sources.

SOURCE T ITLE DURATION

movies.aol.com Aliens 110
finnguide.fi Aliens 112
amazon.com Clockwork Orange 137
movie-vault.com A Beautiful Mind 144
walmart.com A Beautiful Mind 145
tesco.com Clockwork Orange 131

TABLE I
DISCREPANCIES IN MOVIE DURATIONS

In a table such as this, we would expect the FD TITLE

→ DURATION to hold. However, it is likely that different
sources have different methods for measuring movie durations,

depending on whether opening blurbs or closing credits are
included, and so on. For example, we have differing values
(110 and 112) in the DURATION field for the first two entries.
In such a setting, where there can be natural differences in how
data is recorded, a traditional dependency definition seems
overly restrictive.

As another example, consider Table II, which depicts an
example of violation of traditional FDs for strings. Whether
or not the word “Avenue” is abbreviated to “Ave.”, whether
“Street” is written out in full or as “St.”, and so on, might
change the representation of an address to the point where
a natural dependency of the form SSN→ ADDRESS may
no longer hold on a merged table, even though the different
sources are clearly referring to the same address.

SOURCE SSN ADDRESS

data.com 124-14-5903 1403 3rd Avenue, Cleveland OH
data.com 563-82-5145 1701 New York Av., Washington, D.C.
snoop.com 563-82-5145 1701 New York Ave., Washington, D.C.
snoop.com 124-14-5903 1403 Third Ave., Cleveland OH

TABLE II
EXAMPLE OF ADDRESS DISCREPANCIES

An example of violation of traditional dependencies due to
variations that form a natural part of the data is depicted in
Table III. The data is organized according to address and their
latitude/longitude values returned from multiple geo-coding
websites [1]. In this scenario one might expect a functionalde-
pendency of the form ADDRESS→ (LATITUDE , LONGITUDE)
to hold, but small errors in precision (insignificant in general),
might causes discrepancies that violate this dependency. Note
that in this setting, the variations are a natural part of thedata,
and cannot be eliminated by format standardization.

SOURCE ADDRESS LATITUDE LONGITUDE

google 65 N St Apt#C6, SLC 40.770896 -111.864066
geocoder 65 N St Apt#C6, SLC 40.770767 -111.863768
google 50 Cen Camp Dr, SLC 40.758951 -111.845246
geocoder 50 Cen Camp Dr, SLC 40.767599 -111.843995
google 35 S 700 E Apt#3, SLC 40.76837 -111.87064
geocoder 35 S 700 E Apt#3, SLC 40.76833 -111.870869

TABLE III
DISCREPANCIES IN LATITUDE/LONGITUDE FOR IDENTICAL ADDRESSES

There has been extensive research on the problem of ver-



ifying and enforcing integrity constraints in heterogeneous
databases [2] integrated from multiple sources. Many different
measures characterizingapproximatefunctional dependencies
have been proposed. These include measures based on deleting
as few tuples as possible so that a given FD holds [3], and
measures based on computing theconditional entropy. The
paper by Gianella [4] surveys the various measures and places
them within an axiomatic framework. Recently, Bohannon
et al. [5] introduced the notion of aconditional functional
dependency. This is a dependency that applies only to tuples
that satisfy a certain condition, and is motivated by integration
scenarios where different tables, with possibly differingin-
tegrity constraints, might be integrated. This work was further
developed by Conget al. [6], who studied the problem of
determining a minimalrepair of an inconsistent database so
as to satisfy a given set of conditional FDs. Most recently,
Fan [7] introduced the notion ofmatching dependenciesas
a way of enforcing object identification constraints across
tables. These dependencies use the idea of similarity measures
to generalize the equality relation. Another perspective on
dependencies and data cleaning was provided by Arenas
et al. [8]: in their framework, rather than removing tuples
that cause inconsistencies with respect to dependencies, they
examine queries to the database, and return an answer that
would be consistent across allminimal repairsto the database.
Research on computing suchconsistent query answerswas
developed further in [9], [10].

Despite the enhanced definitions, it is to be noted that all
the above approaches are vulnerable to small discrepanies
in data. Both approximate as well as conditional functional
dependencies might give poor results due to this inherent
lack of robustness in their defintions. We intend to overcome
these limitations and propose a new notion of functional
dependencies that capture these small variations in data. In this
paper we initiate a study of metric functional dependencies.
We define the notion of a metric functional dependency (MFD)
and perform a study of the complexity of verifying whether
a metric functional dependency holds between two attribute
sets. We give exact algorithms for verifying metric FDs.
Specifically, we show how to verify MFDs efficiently for
general metrics as well as Euclidean distance spaces. We
present an implementation of schemes for verifying MFDs,
and accompany this with an experimental suite that demon-
strates the ability of MFDs to extract useful structure from
data in an efficient manner.

We start by defining metric FDs in Section II. In Section III
we study the complexity of verifying MFDs, and give ex-
act algorithms. Section IV presents a detailed experimental
evaluation of our approach; this is followed by discussion in
Section V.

II. M ETRIC FUNCTIONAL DEPENDENCIES

We denote the domain of an attributeX by dom(X). If X
consists of a sequence of attributesX = A1A2 . . . Ak, then
dom(X) = dom(A1) × dom(A2) × . . . × dom(Ak). A func-
tional dependencyover a relation schemaR is an expression

X → Y , whereX, Y ⊆ R. A functional dependency is said
to hold over a relation instancer if for all pairs of tuples
t, t′ ∈ r, t[X ] = t′[X ] implies t[Y ] = t′[Y ]. For a tuplet and
attributesX , let the equivalence class oft, denoted by[t]X(r),
be the set of all tuples inr that agree witht on X . In what
follows, we will drop references tor, and unless otherwise
specified,[t]X will always be computed over all ofr. In other
words, [t]X = {u ∈ r|u[X ] = t[X ]}. We denote the partition
of r with respect toX as the collection of equivalence classes
πX(r) = {[t]X}. The expression Part(r) denotes the space of
all partitions of the tuples inr. In particular,πX(r) ∈ Part(r).

For a set of tuplesT ⊆ r, let T [Y ] = {t[Y ]|t ∈ T } denote
the projection ofT onto the attribute setY . We can now write
the condition forX → Y to be a functional dependency as:
maxT∈πX (r) |T [Y ]| ≤ 1.

A. Rationale

A traditional FD X → Y says that for any two tuples
t, t′, t[X ] = t′[X ] ⇒ t[Y ] = t′[Y ]. In the aforementioned
examples, this notion breaks down because we have a situation
wheret[Y ] and t′[Y ], while close in a metric sense, are not
equal. Thus, in order to formulate a more robust definition of
a functional dependency, we have to incorporate this notionof
“closeness” into the definition. More formally, we can exploit
any availablemetric structuredefined on the attributeY and
replace the conditiont[Y ] = t′[Y ] by the metric condition
d(t[Y ], t′[Y ]) ≤ δ, whereδ is a tolerance parameter.

Consider the movie database example from Table I. A
natural metric on running times is the absolute difference
d(t, t′) = |tDURATION − t′DURATION |. If we fix δ = 6, then we
see that for each of the distinct values of the attribute TITLE,
the set of values of DURATION lie within an interval of length
δ = 6, and so a “metric” functional dependency holds. For the
example involving latitude/longitude, an appropriate distance
metric in a plane is the two-dimensional Euclidean metric. For
the example involving addresses, the natural metric might be
the distance induced by cosine similarity on strings. In general,
we can say that the MFDX

δ
−→ Y , with metric d : dom(Y )

× dom(Y ) → R holds if for eachx ∈ dom(X), the set of
tuplest with t[X ] = x, when projected toY , lie within a ball
of diameterδ.

Notice that this definition strictly generalizes the traditional
definition of a functional dependency. We can define theexact
metric dE(y, y′) as1 if y 6= y′, and0 if y = y′. It can easily
be verified that this satisfies the properties of a metric. Now,
settingδ = 0, we can see that ifX

δ
−→ Y with the metric

dE , then the standard FDX → Y holds.

B. Definitions

Let d : dom(Y ) × dom(Y ) → R be a metric defined on
the domain ofY . Specifically,d is symmetric, and satisfies
the triangle inequality as well as identity of indiscernables
(d(x, y) = 0 ⇔ x = y). The diameter∆d(S) of a set of
pointsS in a metric space is the maximum distance between
any pair of points:∆d(S) = maxp,q∈S d(p, q).



Definition 2.1 (Metric Functional Dependency (MFD)):
Given a relationr defined over a relation schemaR, attribute
setsX, Y ⊆ R, a metricd over Y , and a parameterδ ≥ 0,
the metric functional dependencyX

δ
−→ Y is said to hold if

max
T∈πX

∆d(T [Y ]) ≤ δ

Example 2.1:Consider again the example in Table I. Let
X = TITLE, andY be DURATION. One setT ∈ πX is the pair
of tuples {(movie-vault.com, A Beautiful Mind, 144),
(walmart.com, A Beautiful Mind, 145)}. T [Y ] is the set
{144, 145}, which under the Euclidean metric has diameter
∆d(T [Y ]) = 1. Similar computations for the other elements
of πX yield the values2 and6 for the corresponding diameters.
Thus, the MFDX

6
−→ Y holds over this relation.

III. V ERIFYING METRIC FDS

It is straightforward to verify whether the FDX −→ Y ex-
ists. For each classT ∈ πX , we merely check that|T [Y ]| = 1.
For metric FDs, we need more complex algorithms. In this
section, we study the verification problem for MFDs. Specif-
ically, in this section we study the complexity of verifying
whether the MFDX

δ
−→ Y holds for a given relationr.

Note that the more general problem, of findingsomechoice
of parameters for which the dependency holds, can be reduced
to the verification problem via binary search.

The choice of metric directly impacts the inherent com-
plexity as well as efficiency of the verification procedures,as
shown below:

General Metric Spaces:It follows directly from the
definition of an MFD (Definition 2.1) that the key subroutine
needed to verify the MFDX

δ
−→ Y is a procedure that

computes the diameter of a set of points in a metric space.
Let n = |r| be the size of the relation.

Observation 3.1:In O(n2) time we can verify whether the

MFD X
δ
−→ Y holds. Further, inO(n) time we can verify

whether there existsδ′ ≤ 2δ such thatX
δ′

−→ Y holds.
Proof: The first statement follows trivially from a simple

brute force procedure. The second statement follows from
the following algorithm: Pick any point and find its furthest
neighbour. It is well known [11] that this distance is at
least half the optimal diameter; doubling it gives the desired
approximation.

We refer to the brute force approach as BRUTE and the
linear time 2-approximation as 2-APPROX.

Euclidean Metrics: If we have no further information
about the metric, then 2-APPROX is the best known approach.
In practice however, natural metrics on attributes will have
more structure. For example, the DURATION field from Ta-
ble I induces the Euclidean distanced(a, b) = |aDURATION −
bDURATION |. For this metric, diameter computation is trivial:
compute the maximum and minimum values and take their
difference. For points in the plane, diameter computation can
be performed inO(n log n) time by computing the convex
hull of the points and walking along the boundary in linear

time [12] using the rotating calipers method. We refer to this
algorithm as CALIPERS.

It is possible to compute the diameter inO(n log n) time
for points in three dimensions [13]; however, this algorithm is
highly impractical. Ford ≥ 4, there can beΩ(n2) diameter
pairs, and so obtaining better exact solutions is difficult,
although there are some approaches. A more useful direction
is to allow the algorithm to return anapproximate diameter,
which might be within a factor of1 + α of the correct
answer. This will immediately yield an approximate verifier
for the MFD X

δ
−→ Y ; as we saw in the case of general

metric spaces, we will be able to verify whether there exists

a δ′ ≤ (1 + α)δ such thatX
δ′

−→ Y .
The best known approach (in terms of dependence onn)

for computing the approximate diameter of a setP of n
points in Rd is the core-set-based approach of Agarwalet
al. [14]. Their algorithm yields the desired approximation
in time O(n + 1/α

3(d−1)
2 ). A variant of this algorithm was

implemented by Yuet al. [15] and was demonstrated to
be quite effective in low dimensionsd ≤ 8. We use this
algorithm for approximate diameter calculation and refer to it
as CORESET. For details of the algorithm, we refer the reader
to [15].

String Metrics: For string data, an appropriate metric
is the distance derived from the cosine similarity of high-
dimensional q-gram vectors, obtained from the q-gram fre-
quency counts of strings. The normalized q-gram vectors can
be considered as points lying on a high-dimensional unit
sphere. The cosine similarity between any two such points
can be evaluated as the dot product of the normalized vectors.
Thus, computing the cosine dis-similarity of q-gram vectors is
equivalent to computing the Euclidean distance between corre-
sponding high-dimensional (normalized) vectors, and thusthe
algorithm CORESET from above can be used.

However, this algorithm does not scale well with dimension,
and thus it is more effective to use the algorithms BRUTE

and 2-APPROX, by treating the high dimensional vectors as
points in a general metric space. In Section IV, we present
experimental results for this approach.

The Verification Algorithm:Algorithm 1 summarizes the
overall verification procedure. The procedure DIAM(P, α)
invokes the appropriate algorithm from above, returning a
numberr within a (1+α) factor of the diameter ofP . If α = 0,
the exact diameter is returned. The algorithm makes a linear
number of calls to DIAM(P, α), one for eachT ∈ πX(r).

IV. EXPERIMENTS

Experiments were performed on a 2.7 GHz dual-core
Pentium PC with 2 GB of RAM. The performance results
presented are based on real time as reported by the Unixtime
command. Each experiment was repeated 10 times and the
average time was reported. All algorithms were implemented
in C++. We used three data sources for our experiments.
Table IV displays a summary of data characteristics as well
as the metrics used and FDs tested.



DATA SET DIME- #TUPLES AVG #CONSEQU- SOURCE METRIC FD TESTED
NSION ENTS/ANTECEDENT

MOVIEDURATION 1 16688 33 Web Absolute Difference (L1) T ITLE −→ DURATION

LATLONG 2 100000 100 Synthetic Euclidean Distance (L2) ADDRESS−→ (LATITUDE , LONGITUDE)
STRINGS 676 100006 200 DBGen Cosine Similarity SSN−→ NAME

TABLE IV
SUMMARY STATISTICS FOR OUR DATA SOURCES

Input: Relation r, attribute setsX, Y , parameterδ, error
parameterα ≥ 0

Output: YES if X
(1+α)δ
−→ Y , else NO

1: for eachT ∈ πX(r) do
2: Let δT ← DIAM (T [Y ], α)
3: if δT > (1 + α)δ then
4: Return NO
5: end if
6: end for
7: Return YES

Algorithm 1. VERIFYMFD: Verifying X
δ

−→ Y

We study experimental results of Algorithm VERIFYMFD
for verifying MFDs.

One dimension:As discussed in Section III, the diameter
of a set of points on the line can be computed trivially by
reporting the minimum and maximum along the axis.

Two dimensions:We implement Algorithm CALIPERS

using QHull [16] for convex hull construction and rotating
calipers [17] to compute diameter of the convex hull. Algo-
rithm CORESET is implemented using the method of [15],
with code provided by Hai Yu. Figure 1(a) compares the
performance and quality of the aforementioned approaches
with euclidean similarity metric. The left Y-axis of Fig-
ure 1(a), plotted in log-scale, compares the time complexity
of CALIPERS against CORESET. For large number of inputs,
CORESET significantly outperforms CALIPERS. The right Y-
axis presents the % error in diameter calculation. As can be
seen, the error introduced due to CORESET is around 10%-
15% for large input sizes.
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Fig. 1. Performance and quality comparison of: (a) CALIPERS vs
CORESETfor LATLONG (b) BRUTE vs 2-APPROX for STRINGS

Higher dimensions:Figure 1(b) compares the perfor-
mance and quality of BRUTE and 2-APPROX with cosine
similarity metric for STRINGS. The left Y-axis of Figure 1(b),
plotted in log-scale, compares the running time of BRUTE

against 2-APPROX. As expected, with increase in number of
inputs, linear time 2-APPROXoutperforms quadratic complex-

ity BRUTE. More importantly, the right Y-axis which presents
the % error in diameter calculation shows that the error in
diameter calculation is zero for most input sizes.

V. D ISCUSSION

Classical dependency theory applies to traditional databases,
and much current work in this realm involves extending
notions of dependency to be more robust to data failure
and errors. In this paper, we have introduced the idea of
a metric functional dependency as a way of validating data
relationships robustly when dealing with heterogeneous data
sources. Our results show that the notion is fundamentally
sound and realistic: dependency verification can be performed
on large data sets, and for a diverse collection of possible data
types.
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